pH Dependence of ¹⁵N NMR Shifts and Coupling Constants in Aqueous Imidazole and 1-Methylimidazole.

Comments on Estimation of Tautomeric Equilibrium

Constants for Aqueous Histidine

M. Alei, Jr.,*1a L. O. Morgan,1b W. E. Wageman,1a and T. W. Whaley1a

Contribution from The Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545, and the Department of Chemistry, The University of Texas, Austin, Texas 78712. Received September 14, 1979

Abstract: ^{15}N , ^{1}H , and ^{13}C NMR spectra for $[^{15}N_2]$ imidazole and $[^{15}N_2]$ -1-methylimidazole in aqueous solution as functions of pH provide shift and coupling-constant information useful in characterizing the protonated and unprotonated forms of these compounds and as background for determining N binding to other species, such as metal ions. When combined with similar data for the imidazole-ring atoms in histidine, these data give more reliable estimates of tautomeric equilibrium constants for the amphionic and anionic forms of histidine than were possible from the histidine data alone.

The combination of high ¹⁵N enrichment and pulsed Fourier-transform nuclear magnetic resonance (NMR) techniques provides sufficient sensitivity for the detailed investigation of nitrogen-containing compounds in solution at relatively low concentrations. Observations on imidazole and related compounds are of special interest because of the biological role of imidazole-ring nitrogens in many enzyme systems. In carbonic anhydrase, for example, the active site probably involves coordination of Zn(II) to the imidazole-ring nitrogen of histidine, ^{2a} while in the serine proteases the pH-dependent protonation-deprotonation of the imidazole ring of histidine probably plays an important role in the detailed mechanism of peptide-bond cleavage by these enzymes.2b In earlier publications³ we have demonstrated the utility of ¹⁵N NMR for studying complexation between imidazole and Zn(II) or Cd(II) in aqueous solution. In the present work we have investigated in detail the effects of the pH-dependent protonation-deprotonation on the ¹⁵N NMR parameters of imidazole and 1-methylimidazole in aqueous solution.

The imidazole ring is a particularly important constituent of biological systems primarily because of the equilibrium shown in eq 1, with its unique pK_a value near neutrality in

aqueous solution. This gives the imidazole ring the capability, in many biological fluids, of acting as a proton donor or acceptor and, perhaps most importantly, as a ligand which can coordinate metal ions. Characterization of the acidic and basic forms of imidazole and related compounds by virtue of their NMR properties has accordingly received a good deal of attention in recent years. Thus, Wasylishen and Tomlinson⁴ have shown that the ¹³C₂-H and ¹³C₄-H nuclear spin-spin coupling constants both increase significantly in absolute magnitude when imidazole is converted to imidazolium ion in aqueous solution. More recently, these same authors have used longrange ¹³C-¹H couplings in substituted imidazoles to draw inferences regarding imidazole tautomerism in L-histidine and related compounds.⁵ Reynolds et al.^{6,7} have used ¹³C shift measurements on the imidazole-ring carbon atoms of L-histidine to derive similar information.

Prior ¹⁵N NMR studies of systems containing the imidazole ring include a study of the ¹⁵N shift as a function of pH for the

imidazole nitrogens of histidine⁸ and a more detailed study of ^{15}N shifts, coupling constants, and spin-lattice relaxation times for imidazole nitrogens of histidine as a function of pH.⁹ Bachovchin and Roberts^{2b} have recently reported ^{15}N shifts as a function of pH for the imidazole nitrogens of histidine in α -lytic protease in aqueous solution. ^{15}N NMR studies of imidazoles in nonaqueous solution have also been reported. 10,11

Experimental Section

Synthesis of [15N2]Imidazole. The synthesis reported in an earlier publication³ has been replaced by a modification which is not only easier to carry out, but also yields more than twice the amount of desired product. The procedure was as follows: 24 mL of a 40% aqueous solution of glyoxal (Aldrich, analyzed), 16 mL of a 37% aqueous solution of formaldehyde (Mallinckrodt, AR), and either 0.4 mol (21.8 g) of $^{15}\mathrm{NH_4Cl}$ or 0.2 mol (26.4 g) of $(^{15}\mathrm{NH_4})_2\mathrm{SO_4}$ were combined in a 500-mL Erlenmeyer flask with 24/40 \$ mouth. To the resulting slurry (the ammonium salt is not completely soluble at room temperature) was added dropwise, with continual stirring, a total of 23.5 mL of 50% aqueous NaOH. During the course of the addition (ca. 0.5 h) considerable heat was evolved (the reaction mixture rose in temperature to ca. 60 °C) and the reaction mixture proceeded from a light-yellow slurry to a light amber-colored solution, and finally to a dark reddish-brown slurry. The final reaction mixture was evaporated to dryness at 40-50 °C by attaching the Erlenmeyer flask to a rotary evaporator. The resulting brown solid was scraped off the walls of the Erlenmeyer flask and transferred to a vacuum sublimation apparatus where the crude [15N2]imidazole sublimed away readily at ca. 125 °C. A second vacuum sublimation of the crude material followed by one or two recrystallizations from C₆H₆ (product dissolved in ca. 10 mL of hot C_6H_6/g and cooled to ca. 10 °C for 1 or 2 h) yielded white, crystalline [15N₂]imidazole melting at 89-90 °C. The yield was 45-50% (6-7 g) based upon the starting ammonium salt.

[15N₂]-1-Methylimidazole. Reagents were obtained as follows: potassium hydride (Alfa Division, Ventron Corp., Danvers, Mass.), methyl p-toluenesulfonate (Eastman Organic Chemicals, Rochester, N.Y.), 1-methylimidazole (Aldrich Chemical Co., Milwaukee, Wis.). Gas chromatographic analyses were performed on a Varian Model 2100 instrument using an OV-225 column, He carrier gas, and temperature programming from 50 to 250 °C at 6 °C/min. Infrared spectra were recorded on a Perkin-Elmer Model 710 spectrophotometer.

Potassium hydride (16.5 g, 24.3% in mineral oil, 0.1 mol) was added to a 500-mL, three-neck flask, previously flushed with N_2 gas, and equipped with a mechanical stirrer, addition funnel, and condenser. The KH was washed three times with anhydrous petroleum ether (to remove mineral oil), and then suspended in 125 mL of anhydrous tetrahydrofuran (THF). A solution of [$^{15}N_2$]imidazole (7.02 g, 0.1 mol) in anhydrous THF (35 mL) was added over 30 min, and the mixture was stirred until H_2 evolution ceased. A solution of methyl

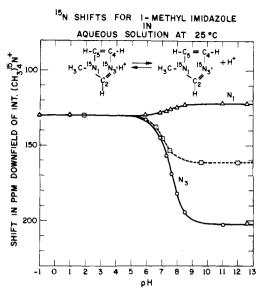


Figure 1. pH dependence of ¹⁵N NMR shifts for 1-methylimidazole in aqueous solution at 25 °C. (Dashed line through squares represents data for imidazole published previously.)³

p-toluenesulfonate (19.55 g, 0.105 mol) in THF (15 mL) was added over 5 min. The reaction mixture became quite warm, and vigorous stirring was necessary to dissipate the gel that formed. After the mixture was stirred for 1 h, water (50 mL) was added and the THF removed under reduced pressure. The aqueous residue was then placed in a continuous extractor and extracted with CH_2Cl_2 for 48 h. The CH_2Cl_2 solution was dried (MgSO₄) and the solvent removed on a steam bath. Distillation of the residue (80–90 °C, 19 mm) afforded [$^{15}N_2$]-1-methylimidazole (4.25 g, 50%) as a colorless liquid. The identity and purity of the product were confirmed, using IR and GC, by comparison with an authentic sample.

Nuclear Magnetic Resonance Spectra. The ¹⁵N spectra discussed in this work were taken at 25 °C on a Varian XL-100 spectrometer operating in FT mode at 10.16 MHz. Samples were ca. 2 mL of 1-2 M aqueous solutions of [¹⁵N₂]-imidazole or [¹⁵N₂]-1-methylimidazole in 12-mm o.d. Pyrex sample tubes. ¹³C spectra were taken on the same instrument at 25.2 MHz or on a Varian CFT-20 spectrometer at 20 MHz. Proton spectra were taken on either a Varian HA-100 or EM-360 spectrometer in CW mode at ambient temperature (28-30 °C).

Accuracy of measured splittings is estimated to be ± 0.2 Hz. Spectral simulations were done using NMRCAL, ¹² which is applicable to two to six spin systems with spin 1 /₂ nuclei, on a Nicolet Instrument Corp. NIC 80 data processor. Transitions are calculated using perturbation theory ^{13,14} with estimated chemical shifts and coupling constants to obtain δ -function spectra (stick figures) upon which a single Lorentzian line shape is superimposed. Best values of input parameters were estimated by visual fitting of calculated and observed spectra for both 1 H and 15 N.

Results and Discussion

The effect of pH variation on the relative proportions of acidic and basic forms of imidazole in aqueous solution leads to some interesting changes in the ¹⁵N spectrum. In the pH range 5-9, where significant amounts of both imidazole (Im) and imidazolium ion (ImH+) are present, one observes a single ¹⁵N resonance of varying line width due to rapid ¹⁵N-H proton exchange between the two species. This exchange (probably involving H₂O protons in the detailed mechanism) averages the 31.1-ppm shift in the average ¹⁵N resonance between the two species and leads to a single resonance with line width and resonant frequency dependent upon pH (ratio of Im:ImH⁺). From an analysis of the 15N line widths in this pH region we infer¹⁵ that the ImH⁺-Im proton exchange rate (protons exchanged per second by an imidazole species) is given by $k[ImH^+][Im]$ with $k \simeq 1 \times 10^4 \text{ s}^{-1} \text{ M}^{-1}$. Similar observations were made on the ¹⁵N₃ nitrogen of 1-methylimidazole.

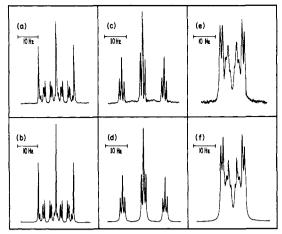


Figure 2. 15 N and 1 H NMR spectra of aqueous 1 M imidazole at 25 °C (pH 12): (a) 10.16-MHz 15 N spectrum, 3965 transients, 19- μ s pulse (30° tip angle), 20-s repetition rate, 100-Hz sweep width, 2048 points; (b), (d), (f) simulated 15 N, H_2 , and $H_{4,5}$ spectra, respectively; (c) 100-MHz H_2 spectrum, ambient temperature, 0.5-s frequency response, 500-s sweep time, 57-dB rf attenuation, H_2 O lock; (e) 100-MHz $H_{4,5}$ spectrum, as in (c).

At pH < 4 or > 10, exchange makes a negligible contribution to the ¹⁵N line width since, in each case, only one species is present in significant amount. However, exchange of ¹⁵N-H protons with H₂O is still rapid enough, in both cases, to preclude observation of any effects of coupling between ¹⁵N and a directly bonded proton. At high pH, this exchange also serves to make the nitrogens equivalent in the neutral species (Im), and one observes a single 15N resonance with well-resolved multiplet structure due to coupling with the C-H protons of the imidazole ring. Similarly at low pH one observes only the coupling between 15N and the C-H protons of imidazolium ion (ImH⁺). However, if the acidity is increased to very high values (>6 M HCl), the exchange of solvent protons with ¹⁵N-H protons of ImH⁺ is slowed sufficiently to permit observation of the directly bonded ¹⁵N-H coupling. The ¹⁵N₃ resonance of 1-methylimidazole displays similar behavior.

15N Shifts as a Function of pH. 15N NMR shifts for 15N₁ and ¹⁵N₃ of 1-methylimidazole in aqueous solution as a function of pH are plotted in Figure 1. Also included in that figure are shift data for the averaged ¹⁵N resonance in imidazole as reported in an earlier publication.³ The solid and dashed curves are drawn through the experimental points to aid in visual comparisons. They do, in fact, correspond closely to $pK_a = 7.1$ for imidazole and $pK_a = 7.2$ for 1-methylimidazole. Several important points should be made with regard to these data: (1) As expected, protonation of 1-methylimidazole at 15N3 produces a large shift of the $^{15}N_3$ resonance (73.0 \pm 0.2 ppm upfield) and a comparatively small shift at $^{15}N_1$ (8.0 \pm 0.2 ppm downfield) relative to the unprotonated species. (2) At high pH, the averaged ¹⁵N resonance for imidazole appears at 161.5 ppm downfield of tetramethylammonium ion while the average for ¹⁵N₁ and ¹⁵N₃ of 1-methylimidazole is at 162.1 ppm on the same scale. (3) In 1-methylimidazolium ion (low pH), the ¹⁵N₁ and ¹⁵N₃ resonances essentially superpose at 129.5 ppm on the shift scale while the equivalent nitrogens in imidazolium ion are found at 129.7 ppm on the same scale. Observations (2) and (3) suggest strongly that replacement of a proton by a methyl group has a negligible effect on the ¹⁵N₁ chemical shift. This conclusion has also been drawn by Bachovchin and Roberts^{2b} on the basis of similar observa-

Coupling Constants. The coupling constants derived in this work are summarized in Table I and some representative experimental and simulated ¹⁵N and ¹H spectra are shown in Figures 2-4 to demonstrate typical spectral resolution and

Table I. Coupling Constants among ¹H, ¹³C, and ¹⁵N for Neutral, Cationic, and Anionic Species of Imidazole, 1-Methylimidazole, and Histidine⁹ in Aqueous Solution at 25 °C

	coupling constants, Hz								
	Im ^a	ImH ⁺ ^b	1-MeIm	1-MeImH+	His-	His ⁺⁽²⁺⁾			
$^{1}J_{C_{2}N_{1}}$		_	-12.2	-16.7	-6.4	-16.1			
$^{1}J_{\mathrm{C_{2}N_{3}}}$	-6.9	-16.2	-1.9	-16.7	-6.9	-16.0			
$^{1}J_{\mathrm{C}_{5}\mathrm{N}_{1}}$			-13.4	-11.4	-7.3	-11.6			
$^{1}J_{\mathrm{C_4N_3}}$	-5.9	-10.6	+0.9	-10.7	-4.7	- 9.9			
1JCMeN1			-10.6	-10.1					
$^{2}J_{\text{C4N1}}$			-4.8	-0.9					
$^2J_{\text{CsN}_3}$	±0.9	<0.5	< 0.5	<0.5					
$^2J_{\mathrm{N_3N_1}}$	±1.1		±1.1	±1.7	±0.9	±0.9			
$J_{\mathrm{N_3H_3}}$		-100.0		-101.0					
$^2J_{\text{N}_1\text{H}_2}$			- 7.6	-5.0	-8.8	-4.6			
$^{2}J_{N_{3}H_{2}}$	-9.6	-5.5	-10.8	-5.4	- 9.6	- 6.1			
${}^{2}J_{N_{1}H_{5}}$ ${}^{2}J_{N_{3}H_{4}}$	-7.2	-4.0 to -4.6	-5.5 -9.0	-4.4 to -5.2	-6.6	-4.8			
$^{2}J_{\text{N_1HMe}}$			-1.6	-1.9					
$^{3}J_{N_{1}H_{4}}$	-2.5	-4.0 to -4.6	-3.5 -1.7	-3.8 to -4.6	-2.2	-3.0			
$^{3}J_{H_{4}H_{5}}$	+1.4								
$^{3}J_{\mathrm{H}_{2}\mathrm{H}_{4}}$		113	+1.2	+1.5					
$^3J_{\mathrm{H_2H_5}}$	+1.0	+1.3	+1.4	+1.5					

^a Rapid proton exchange between N_1 and N_3 renders N_1 and N_3 , C_4 and C_5 , and H_4 and H_5 isochronous; only average coupling constants are experimentally observed. ^b The symmetry of the lmH⁺ ion makes N_1 and N_3 , C_4 and C_5 , and H_4 and H_5 each an equivalent pair of nuclei.

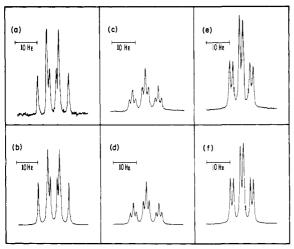


Figure 3. 15 N and 1 H NMR spectra of aqueous 1 M imidazolium ion (pH 4.0) at 25 °C: (a) 10.16-MHz 15 N spectrum, 70 transients, 50- μ s pulse, 64-s repetition rate, 100-Hz sweep width, 1024 points; (b), (d), (f) simulated 15 N, 15 N, 15 L, and 15 L, and 15 L, and 15 L, spectra, respectively; (c) 100-MHz 15 L spectrum, as in Figure 2; (e) 100-MHz 15 L, spectrum, as in Figure 2.

quality of agreement between experimental and simulated spectra. To obtain optimal spectral resolution at high pH, it was usually necessary to treat the solutions with H₂S to precipitate traces of paramagnetic impurities. This caused a drop in pH which was restored to near its initial value by flushing out dissolved H₂S (with argon) and adding a small amount of NaOH solution. The ¹³C¹⁵N couplings, derived from natural-abundance ¹³C spectra of the ¹⁵N-labeled materials, produced simple, first-order ¹³C spectra from which the coupling constants could be derived by inspection.

To ensure proper assignment of the C_4 and C_5 resonances and to test for possible changes in sign of $^{13}C^{15}N$ coupling constants between 1-MeIm and 1-MeImH+ we have recorded normal-abundance ^{13}C spectra for mixtures of 1-MeIm and 1-MeImH+ covering the pH range from \sim 11 (100% 1-MeIm) to \sim 4 (100% 1-MeImH+). Owing to rapid proton exchange between the two species, we anticipated that the shifts and couplings in a given mixture would be linearly weighted averages between the corresponding values for the acidic and

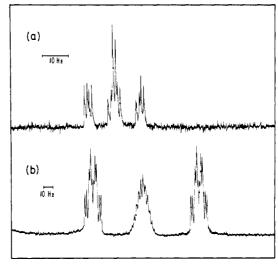


Figure 4. 10.16-MHz 15 N spectra for aqueous 1-methylimidazole at 25 °C: (a) 15 N₃ spectrum for a 2 M solution (pH 12.7), 315 transients, 20- μ s pulse, 20-s repetition rate, 100-Hz sweep width, 2048 points; (b) 15 N₁ and 15 N₃ (101-Hz doublet) peaks for 1.7 M 1-methylimidazolium ion in 8.5 M HCl.

basic forms. Furthermore, if a given coupling constant changes sign between the two forms, a plot of the magnitude of the coupling vs. mol % of one of the species should go through zero on the coupling-constant scale. Figures 5-7 summarize the observed ¹³C shifts and ¹³C¹⁵N coupling constants as a function of mole fraction 1-MeImH+. As anticipated, a plot of any of the NMR parameters vs. mole fraction 1-MeImH⁺ is linear within experimental uncertainty. An interesting result is the crossover of the C₄ and C₅ resonance positions, C₄ being downfield of C₅ in 1-MeIm and upfield of C₅ in 1-MeImH⁺. The observed chemical shifts and changes on protonation are quite consistent with those reported by Reynolds et al.⁶ for imidazole, histidine, and various histidine derivatives. From their Figure 2, the protonation shifts for C₂, C₄, and C₅ in 1methylhistidine are -3.4, -7.1, and +2.3 ppm, respectively, while the corresponding values for 1-MeIm are -2.9, -7.5, and +2.1 ppm. In Im the protonation changes are -2.4 ppm

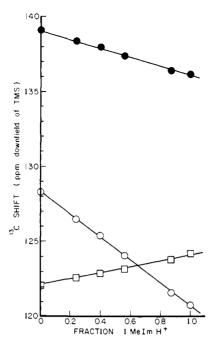


Figure 5. 13 C shifts for aqueous mixtures of 1-MeIm and 1-MeImH+ at 25 °C; $C_2 = \bullet$; $C_4 = o$; $C_5 = \Box$.

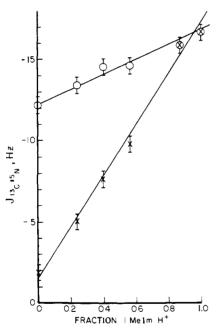


Figure 6. $^{13}C^{15}N$ coupling constants for aqueous mixtures of 1-Melm and 1-MelmH+ at 25 °C: C_2 - N_1 = 0; C_2 - N_3 = X.

for C_2 and -2.7 ppm for $C_{4,5}$; the average for C_4 and C_5 in 1-MeIm is -2.7 ppm. These results suggest that substitution of a methyl group for a proton at N_1 produces very small changes (if any) in the ^{13}C shifts at C_2 , C_4 , and C_5 .

With regard to the coupling-constant data, there is no evidence for a change in sign except for the C_4N_3 coupling where the plot of coupling constant vs. mol % 1-MeImH⁺ is a much better straight line if the value of 0.9 is given a sign opposite to that for the other values. The C_4 multiplet is a doublet of doublets at both high and low pH limits, but is observed as a triplet where 1-methylimidazole is 40% protonated, so that the C_4N_3 and C_4N_1 coupling constants are apparently equal at that point (cf. Figure 7). Although the sign of $J_{C_4N_1}$ was not determined directly, it may be inferred, on the basis of calculated values (see below) for which relative values are expected to be more reliable than individual values, that the change on

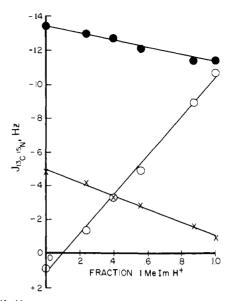


Figure 7. $^{13}C^{15}N$ coupling constants for aqueous mixtures of 1-Melm and 1-MelmH $^+$ at 25 °C: $C_5-N_1= \bullet$; $C_4-N_3= o$; $C_4-N_1= X$.

protonation is positive. That leads to negative values of $J_{C_4N_1}$ for both 1-MeIm and 1-MeImH⁺.

To test for the possibility that the coupling constants might show a significant concentration dependence, we measured the ¹³C¹⁵N and ¹⁵N¹H couplings in a 0.2 M solution of imidazole at high pH. The values were indistinguishable from those measured for 1 M solutions under the same conditions.

The coupling constants determined in this work are absolute values only. Following the practice of Blomberg et al.⁹ we have assigned positive and negative values on the basis of experimental determinations for similar systems (see their discussion of the N-H constants and citations therein) and the theoretical outline of Schulman and Venanzi,16 whenever possible. The latter authors have shown that a self-consistent-field calculation of the Blizzard-Santry¹⁷ type yields ¹³C¹⁵N couplings which agree well with experimental values for a number of compounds. We have applied this calculational technique to imidazole and 1-methylimidazole in their basic and acidic forms using the same assumptions as those of ref 16. The results are summarized in Table II. The agreement between magnitudes of calculated and experimental values is very good for the large ^{1}J couplings involving N_{1} . In such cases it seems reasonable to conclude that the sign of the coupling constant is that given by the theoretical calculation. In other cases where the coupling magnitudes are small or there is poor agreement between the calculated and experimental magnitudes, any decision with regard to sign is less certain. It is interesting to note that, while calculated and observed values for 1-methylimidazole are in good agreement for ${}^{1}J_{C_{2}N_{1}}$, they are in poor agreement for ${}^{1}J_{C_{2}N_{3}}$. To explore the possibility that neglect of H bonding between N₃ and H₂O molecules in the calculational model might be responsible for this discrepancy we (1) repeated the calculations assuming reasonable H-bonding models and (2) measured the CN coupling constants for 1methylimidazole in CH₂Cl₂ and in CHCl₃. The results of the calculations showed that neglect of H bonding has little effect on the calculated couplings. The experimental measurements in the nonaqueous solvents (where H bonding between N3 and solvent molecules is expected to be much weaker than in H₂O) are summarized in Table III and also suggest that the CN coupling constants are not very sensitive to whether or not N_3 is involved in H bonding. Thus, the discrepancy between calculated and experimental values for ${}^{1}J_{C_{2}N_{3}}$ remains unresolved.

Calculations on 4- or 5-methylimidazole showed that the

Table II. Comparison of Calculated and Experimental Values for J_{13C15N} in ¹⁵N-Labeled Compounds (Hz)^a

molecule	bond	$J_{ m XN}^{ m FC}$	J_{XN} o	$J_{\mathrm{XN}}{}^{\mathrm{D}}$	$J_{\rm XN}$ (total)	$J_{\rm XN}$ (obsd)
imidazole ^b	C_2N_1	-12.72	+0.90	-0.03	-11.9	-6.9
	C_2N_3	+6.50	+1.77	-0.44	+7.8	-6.9
	C_5N_1	-14.57	+0.77	0.00	-13.8	-5.9
	C_4N_3	+1.32	+1.16	-0.19	+2.3	-3.9
	C_4N_1	-0.23	-0.15	-0.11	-0.5	±0.9
	C_5N_3	+2.39	-0.05	+0.19	+2.5	10.7
imidazolium ion ^c	C_2N_1	-16.66	+1.29	-0.15	-15.5	-16.2
	C_2N_3	-16.66	+1.29	-0.15	-15.5	10.2
	C_5N_1	-11.28	+0.76	-0.04	-10.6	-10.6
	C_4N_3	-11.28	+0.76	-0.04	-10.6	-10.0
	C_4N_1	+2.62	-0.09	+0.02	+2.5	<±1.0
	C_5N_3	+2.62	-0.09	+0.02	+2.5	\11.0
1-methylimidazole ^d	C_2N_1	-12.70	+0.97	-0.03	-11.8	-12.2
·	C_2N_3	+5.93	+1.80	-0.04	+7.3	-1.9°
	C_5N_1	-14.50	+0.79	0.00	-13.7	-13.4
	C_4N_3	+1.44	+1.16	-0.19	+2.4	+0.9°
	$C_{Me}N_1$	-10.35	+0.21	-0.13	-10.3	-10.6
	C_4N_1	-0.03	-0.11	-0.10	-0.2	-4.8^{f}
	C_5N_3	+2.44	-0.06	+0.19	+2.6	<1
1-methylimidazolium iong	C_2N_1	-16.24	+1.37	-0.20	-15.1	-16.7
•	C_2N_3	-15.93	+1.25	-0.12	-14.8	-16.7
	C_5N_1	-11.58	+0.80	-0.06	-10.8	-11.4
	C_4N_3	-11.78	+0.78	-0.05	-11.1	-10.7
	$C_{Me}N_1$	-9.87	+0.14	-0.12	-9.9	-10.1
	C_4N_1	+2.81	-0.07	+0.04	+2.8	-1.0^{f}
	C_5N_3	+2.53	-0.09	+0.01	+2.5	<±1.0

^a Parameters were $S_C^2(0)S_N^2(0) = 13.79a_0^{-3}$ and $\langle r^{-3}\rangle_C \langle r^{-3}\rangle_N = 1.77a_0^{-3}$, from J. M. Schulman and T. Venanzi, J. Am. Chem. Soc., 98, 4701–4705 (1976). Signs for experimental values were chosen on the basis of calculated values and correspond with experimental signs determined in model compounds except as noted. Observed values are for dilute aqueous solutions. ^b Assume molecular geometry of crystalline imidazole at 20 °C as determined from neutron diffraction study of B. M. Craven, R. K. McMullan, J. D. Bell, and H. C. Freeman, Acta Crystallogr., Sect. B, 33, 2585–2589 (1977). ^c Assume molecular geometry of imidazolium ion in crystalline imidazolium dihydrogen orthophosphate as determined by R. H. Blessing and E. L. McGandy, J. Am. Chem. Soc., 98, 6739 (1976). ^d Assume same imidazole-ring geometry as for imidazole and attach tetrahedral CH₃ group at N₁ with C-N bond length = 1.47 Å, C-H bond lengths = 1.093 Å, and C₃ axis of CH₃ group collinear with C-N₁ bond. ^e Sign determined from titration curves (Figures 6 and 7). ^f Signs based on assumed correspondence with calculated change on protonation. ^g Assume same ring geometry as for imidazolium ion and attach methyl group at N₁ as described in footnote

Table III. Comparison of Experimental ¹³C¹⁵N Coupling Constants (Hz) in Various Solvents

coupling	H ₂ O	exptl values CHCl ₃	CH ₂ Cl ₂	calcd values
$^{1}J_{\text{C}_{2}\text{N}_{1}}$	12.2	11.6	11.3	-11.8
$^{1}J_{\mathrm{C_{2}N_{3}}}$	1.9	<1	<1	+7.3
$^1J_{\mathrm{C_5N_1}}$	13.4	13.4	14.0	-13.7
$^{1}J_{\mathrm{C_4N_3}}$	0.9	2.4	2.7	+2.4
$^2J_{\text{C4N}_1}$	4.8	5.8	5.8	-0.2
$^2J_{\mathrm{C_5N_3}}$	<1	1.5	1.7	+2.6

calculated ¹³C¹⁵N couplings between nuclei in the imidazole ring are relatively insensitive to the point of attachment of the methyl group.

In spite of the obvious geometrical differences among pyrrole, pyridine, and the imidazoles, surprisingly good agreement is found with comparable $^{13}\mathrm{C}^{15}\mathrm{N}$ coupling constants, as shown in Table IV. That is especially notable for $J_{C_2N_3}$ in 1-MeIm, where the Blizzard–Santry calculation gives a large positive value, whereas the directly observed value is comparable to that for pyridine. Similarly, the 5.8-Hz C₄N₁ coupling in 1-MeIm (CH₂Cl₂ solution) corresponds to -3.9 Hz observed for C₂N in pyrrole. Thus, the $^{13}\mathrm{C}^{15}\mathrm{N}$ couplings seem to support the concept of a "pyrrole-like" (N₁) and a "pyridine-like" (N₃) nitrogen in imidazole.

Proton-proton coupling constants listed in Table I give best fits to the complex proton-coupled ¹⁵N and ¹H NMR spectra. $^4J_{\rm H_2H_4}$ and $^4J_{\rm H_2H_5}$ for Im are those expected from previous results. ¹⁸ $^3J_{\rm H_4H_5}$ and $J_{\rm N_1N_3}$ were observed only in the Im ¹⁵N spectrum, where they appear as a sum and difference in the submultiplet structure. By comparison with 1-MeIm and His⁻,

Table IV. Comparison of 1-Methylimidazole ¹³C¹⁵N Couplings (Hz) with Model Compounds

1-MeIm (in CH ₂ Cl ₂)		pyrrole ^b		pyridine ^b		
bond	$J_{ m CN}$	bond	$J_{ m CN}$	bond	$J_{ m CN}$	
C_2N_1	-11.3	C_1N	-13.0			
C_2N_3	<±1.0			C_1N	+0.6	
C_5N_1	-14.1	C_1N	-13.0			
C_4N_3	+2.7			C_1N	+0.6	
C_4N_1	(-)5.8a	C_2N	-3.9			
C_5N_3	$(+)1.7^{a}$			C_2N	+2.5	

^a Signs chosen by comparison with experimental values for pyrrole and pyridine. ^b T. Bundgaard, H. J. Jakobson, and E. J. Rahkamaa, J. Magn. Reson., 19, 345-356 (1975).

 $J_{\rm N_1N_3}$ may be taken to be ± 1.1 Hz and $^3J_{\rm H_4H_5}$ is then ± 1.4 Hz, presumably positive.

Tautomerism of Histidine in Aqueous Solution. The data in Table I demonstrate that replacement of hydrogen by a methyl group at N_1 has little effect on the couplings between nitrogen and protons in the imidazole ring. Thus, the average of ${}^2J_{N_1H_2}$ and ${}^2J_{N_3H_2}$ for 1-methylimidazole gives -9.2 Hz, which represents the average coupling to H_2 of a "pyridine-like" nitrogen containing a lone pair of electrons (designated as β -type nitrogen) and a "pyrrole-like" nitrogen (α type) bound to a methyl group. For imidazole a value of -9.6 Hz is observed for the average over a β -type nitrogen and an α -type nitrogen bound to a proton. This suggests that replacement of the methyl group by a proton does not greatly alter the coupling of N_1 or N_3 to H_2 . This hypothesis is further supported by noting that the average of ${}^2J_{N_1H_5}$ and ${}^2J_{N_3H_4}$ for 1-methylimidazole is nearly the same as the observed average value for

bactitracin, pH ca. 8

ref 21 ref 6 ref 5 ref 9 our results 13C shifts 15N shifts $J_{C_5N_1}$ NMR parameter used $^2J_{N_1H_5}$ $^2\overline{J}_{N_1H_5}$ $^3J_{C_5H_2}$ $^3J_{\mathrm{C}_8\mathrm{C}_2}$ histidine, pH ca. 8 0.12 0.24^{a} 0.11 0.2 0.16 0.21 histidine, pH 9.05 0.1 0.5^{b} 0.2 histidine, pH >10 0.35 0.31 0.43 4-methylimidazole, pH ca. 11 0.4 N-acetylhistidine, pH ca. 8 0.36 glycylhistidylglycine, pH ca. 8 0.29

Table V. Comparison of Reported Fractions of βN_1 Tautomer in Aqueous Solutions of Histidine and Several Histidine Derivatives

0.29

Table VI. Comparison of Observed ¹³C¹⁵N and ¹⁵N¹H Couplings (Hz) for Imidazole and Histidine Species with Estimates Based on Aqueous 1-Methylimidazole Species

	lm		His-		His±		ImH+		His ⁺⁽²⁺⁾	
bond	estd	obsd	estd	obsd ^a	estd	obsd ^a	estd	obsd	estd	obsda
C_2N_1	- 7.1	-6.9	-8.1	$(-6.4)^{b}$	-10.1	-10.1	-16.7	-16.2	-16.7	-16.1
C_2N_3	- 7.1	-6.9	-6.0	$(-6.9)^{b}$	-4.0	-2.7	-16.7	-16.2	-16.7	-16.0
C_5N_1	-6.3	-5.9	-7.7	-7.3	-10.5	-10.4	-11.4	-10.6	-11.4	-11.6
C_4N_3	-6.3	-5.9	-4.8	-4.7	-2.0	$(+4.1)^{c}$	-10.7	-10.6	-10.7	-9.9
N_1H_2	-9.2	-9.6	-8.9	-8.8	-8.2	-8.2	-5.0	-5.5	-5.0	-4.6
N_3H_2	-9.2	-9.6	-9.5	-9.6	-10.2	-10.2	-5.4	-5.5	-5.4	-4.1
N_1H_5	-7.3	-7.2	-6.9	-6.6	-6.2	-5.9	-4.4^{d}	-4.0^{d}	-4.4^{d}	-4.8
N1H5	-7.3	-7.2	-6.9	-0.0	-0.2	-3.9	-5.2	-4.6	-5.2	-4.0
N_3H_5	-2.6	-2.5	-2.4	-2.2	-2.1	-1.8	-3.8^{d}	-4.0^{d}	-3.8^{d}	-3.0
143115	-2.0	-2.3	-2.4	-2.2	2.1	1.0	-4.6	-4.6	-4.6	-3.0

^a Data from ref 9. Estimations based on $f_{\beta N_1}(amphion) = 0.20$; $f_{\beta N_1}(anion) = 0.40$. ^b Possible assignment reversal because of data scatter. Both are observed in the C_2 multiplet. ^c The observed coupling ± 4.1 Hz may be attributable to ${}^3J_{C_4N_1}$, rather than ${}^1J_{C_4N_3}$, which is expected to be close to 0, in which case the sign could be either plus or minus. On that basis the estimated value is -3.8 Hz. ^d Analyses of proton spectra yield limits only in these cases.

imidazole. Finally, a comparison of the same couplings in ImH⁺ and 1-MeImH⁺ strongly suggests that replacement of the proton by a methyl group at N₁ has a comparatively small effect on couplings among imidazole-ring nuclei.

Blomberg et al. have utilized observed N-H couplings in the imidazole ring of histidine to infer relative abundances of the two tautomers of histidine (βN_1 and αN_1) in its amphionic and anionic forms. In their calculation, they assumed that the value of ${}^2J_{N_1H_5}$ depends only upon whether N_1 is protonated (αN_1) or deprotonated (βN_1), taking ${}^2J_{\alpha N_1H_5}=-4.8$ Hz (their value for His+ where both N_1 and N_3 are protonated, neglecting any effect of the positive charge on the N_1H_5 coupling) and ${}^2J_{\beta N_1H_5}=-14.4$ Hz, which is an average over literature values for various five-membered heterocyclic ring systems 19,20 containing β -type nitrogen. They then calculated the fraction of βN_1 tautomer for a given histidine species ($f_{\beta N_1}$) using the expression

$${}^{2}J_{N_{1}H_{5}}(obsd) = -14.4f_{\beta N_{1}} - 4.8(1 - f_{\beta N_{1}})$$

From their observed ${}^2J_{\rm N_1H_5}$ values for the amphionic and anionic forms of histidine (-5.9 and -6.6 Hz, respectively) they calculated $f_{\beta \rm N_1}$ = 0.12 at pH 8.2 and 0.2 at pH >9.3, where the anion predominates.

We may check those calculated values of $f_{\beta N_1}$ for the amphionic and anionic forms of histidine using the ¹⁵N shift data for Im and 1-MeIm as a function of pH. The data strongly support the conclusion that deprotonation of a given nitrogen in the imidazole ring produces a +73-ppm shift at that nitrogen and a -8.0-ppm shift at the other nitrogen, whether the other nitrogen is bound to a methyl group or a proton. Thus, if deprotonation of the cationic form of histidine to form the amphion requires deprotonation at N₁ to form the βN_1 tautomer and deprotonation at N₃ to form the αN_1 tautomer, then the observed shift of ¹⁵N₁ between the cationic and amphionic forms is given by

$$\Delta_{N_1}^{-H} = +73.0 f_{\beta N_1} - 8.0 (1 - f_{\beta N_1})$$

assuming, of course, that the ¹⁵N shifts for the imidazole nitrogens of histidine are the same as those for Im or 1-MeIm. Neglecting any direct effects of deprotonation of the primary amine group, the same equation can be used to calculate $f_{\beta N_1}$ for the anion where $\Delta_{N_1}^{-H}$ is the observed ¹⁵N₁ shift change between the cationic and anionic forms of histidine. Using the $\Delta_{N_1}^{-H}$ values of Blomberg et al.⁹ (+5.0 ppm for the amphion and +20.7 ppm for the anion) we calculate $f_{\beta N_1} = 0.16$ and 0.35 for the amphion and anion, respectively. The difference between these $f_{\beta N_1}$ values and those calculated by Blomberg et al.⁹ is attributable primarily to their choice of $^2J_{\beta N_1 H_5} = -14.4$ Hz for the βN_1 tautomer. Based upon our previously noted correlations between the measured coupling constants for Im and 1-MeIm in Table I, we believe that a much more reliable estimate of $^2J_{\beta N_1 H_5}$ is given by $^2J_{N_3 H_4}$ in 1-MeIm, viz., -9.0 Hz. Similarly, we would set $^2J_{\alpha N_1 H_5} = ^2J_{N_1 H_5}(1-\text{MeIm}) = -5.5$ Hz. Then, for a given histidine species

$$^{2}J_{N_{1}H_{5}}(obsd) = -9.0f_{\beta N_{1}} - 5.5(1 - f_{\beta N_{1}})$$

Using the observed ${}^2J_{N_1H_5}$ values of Blomberg et al. 9 we obtain $f_{\beta N_1} = 0.11$ for the amphion and 0.31 for the anion. A comparable calculation based on $J_{C_5N_1}$, in which $J_{C_5\beta N_1} = J_{C_4N_3}(1-\text{MeIm}) = +0.9$ Hz and $J_{C_5\alpha N_1} = J_{C_5N_1}(1-\text{MeIm}) = -13.4$ Hz, yields $f_{\beta N_1} = 0.21$ for the amphion and 0.43 for the anion. A comparison of the various values reported in the literature and the bases for their estimation are given in Table V. The scatter in those results led us to consider all of the CN and NH coupling constants available from this work and the histidine values of Blomberg et al. 9 With the assumption that $f_{\beta N_1} = 0.20$ in His[±] and 0.40 in His⁻ the estimated values were obtained to compare with observations in Table VI. A similar comparison for Im, on the basis of equal tautomer abundances, is also given there. Estimated ImH⁺ and His⁺ constants are those observed for 1-MeImH⁺.

The assumed tautomer abundances in His⁻ are essentially the same as those derived for 4-MeIm⁵ and N-blocked histidine

^a Based on calculated ${}^3J_{C_6C_2} = 5.0$ Hz with NH₄⁺ near N₃. ^b Based on calculated ${}^3J_{C_6C_2} = 6.2$ Hz with NH₃ near N₃.

derivatives. This strongly suggests that stabilization of the αN₁ tautomer in His⁻ does not result from hydrogen bonding between the primary amine protons and βN_3 of the imidazole ring but rather may be largely attributable to electronic or steric consequences of substitution at C₄. In His[±], on the other hand, the decreased stabilization of the βN_1 tautomer may be indicative of significant hydrogen bonding between the primary aminium protons and βN_3 of the imidazole ring. In view of the greater overall consistency of all the results, it seems to us that $J_{C_5N_1}$ may be the parameter best suited for estimation of tautomeric abundances in these systems.

Conclusions

It is perhaps surprising that ring coupling constants in the imidazole derivatives are so closely similar to those in imidazole itself. However, as the calculated values reflect similar behavior, and correspondence with observed coupling constants for equivalent bonds in such divergent structures as pyrrole and pyridine is quite good (Table IV), it must be concluded that they are not really sensitive indicators of structural features other than protonation or deprotonation of the pyridine-like nitrogen (N_3) . While it is tempting to rely more heavily on ^{15}N chemical shifts or NH couplings as indicators for such protonation or deprotonation, it should be noted that for NH couplings the range of values between protonation extremes is relatively small and for 15N shifts effects of the extramolecular environment can be large. 10,11 It therefore seems that $^{1}J_{\rm CN}$ may the NMR parameter best suited for estimating the degree of protonation of imidazole-ring N₃ under the most general conditions.

The largest discrepancies noted in this work are between the

observed and calculated values for $J_{C_4N_1}$ and $J_{C_2N_3}$ in 1methylimidazole. As the observed values do not appear to be solvent dependent to any appreciable extent and the calculated values do not change significantly upon incorporation of hydrogen-bonded structures, we are unable to suggest a resolution for the discrepancies.

Acknowledgment. This work was performed under the auspices of the U.S. Department of Energy.

References and Notes

- (1) (a) The Los Alamos Scientific Laboratory. (b) The University of Texas.
- (a) Sundberg, R. J.; Martin, R. B. *Chem. Rev.* **1974**, *74*, 471 (cf. p 495). (b) Bachovchin, W. W.; Roberts, J. D. *J. Am. Chem. Soc.* **1978**, *100*, 8041.
- Alei, M., Jr.; Morgan, L. O.; Wageman, W. E. Inorg. Chem. 1978, 17, 2288,

- Wasylishen, R. E.; Tomlinson, G. *Biochem. J.* **1975**, *147*, 605. Wasylishen, R. E.; Tomlinson, G. *Can. J. Biochem.* **1977**, *55*, 579. Reynolds, W. F.; Peat, I. R.; Freedman, M. H.; Lyerla, J. R., Jr. *J. Am. Chem.* Soc. 1973, 95, 328.
- (7) Reynolds, W. F.; Freedman, M. H. J. Am. Chem. Soc. 1974, 96, 570.
- (8) Kawano, K.; Kyogoku, Y. Chem. Lett. 1975, 1305.
 (9) Blomberg, F.; Maurer, W.; Rüterjans, H. J. Am. Chem. Soc. 1977, 99,
- (10) Alei, M. Jr.; Wageman, W. E. Tetrahedron Lett. 1979, 667-670.

- (10) Alei, M. Jr.; Wagerian, W. E. Tetranedron Lett. 1979, 647-670.
 (11) Schuster, I. I.; Roberts, J. D. J. Org. Chem. 1979, 44, 3864.
 (12) Nicolet Instrument Corp., NIC-05-40417, revised Sept 1972.
 (13) Pople, J. A.; Schneider, W. G.; Bernstein, H. J. "High Resolution Nuclear Magnetic Resonance", McGraw-Hill, New York, 1959.
 (14) Becker, E. D. "High Resolution NMR", Academic Press, New York, 1959.

- Alei, M. Jr.; Florin, A. E. J. Phys. Chem. 1968, 72, 550.
 Schulman, J. M.; Venanzi, T. J. Am. Chem. Soc. 1976, 98, 4701, 6739.
 Blizzard, A. C.; Santry, D. P. J. Chem. Phys. 1971, 55, 950.
 Wang, S. M.; Li, N. C. J. Am. Chem. Soc. 1966, 88, 4592.
 Lichter, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1971, 93, 5218.

- (20) Kintzinger, J. P.; Lehn, J. M. Chem. Commun. 1967, 660. Mol. Phys. 1968,
- 14. 133. (21) London, R. E. J. Chem. Soc., Chem. Commun. 1978, 1070.

Electronic Spectra and Structure of a Weak π Complex. Vibronic Structure in the Charge-Transfer Transition of Anthracene-s-Trinitrobenzene

C. J. Eckhardt^{†*} and H. Eckhardt

Contribution from the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588. Received August 20, 1979

Abstract: Polarized specular reflection and absorption spectra for the crystalline anthracene-s-trinitrobenzene complex are reported at 20 and 5 K. The quantitative assignment of the polarization of the CT transition of the asymmetric complex places the moment near the line-of-centers. An irregular vibrational progression of \sim 1400 cm $^{-1}$ is observed for the CT transition. A second CT band is observed at 31 000 cm⁻¹. The first and second singlet transitions of anthracene are observed and are found to have free molecule frequencies, intensities, and polarizations. A band seen at 44 000 cm⁻¹ is interpreted as a trinitrobenzene molecular transition. The use of crystals of complexes for study of *molecular* spectra is suggested.

I. Introduction

Recent work in our laboratory has been concerned with the electronic spectra and structure of electron donor-acceptor (EDA) complexes in crystals.¹⁻³ In an effort to further understand the nature of this interaction, we have been particularly concerned with the effects of varied acceptors with a specific donor molecule, namely, anthracene. Previous studies of anthracene crystalline complexes with TCNQ⁰¹ and pyromelletic dianhydride^{2,4} have been made with detailed examination of the excitonic interactions of the latter reported

[†] John Simon Guggenheim Fellow, 1979-1980.

by other workers. 5.6 The concern in our investigations has been centered, insofar as possible, upon the molecular manifestation of the EDA interaction.

The complex of 1,3,5-trinitrobenzene (TNB) with anthracene (A) is one which has been extensively studied. Early work on the complex was done in solution and in organic glasses.⁷⁻⁹ Later work on crystalline films of TNB-A^{10,11} was reported but, since such a study for a single crystal orientation cannot absolutely assign the charge-transfer (CT) transition moment in this asymmetric complex, further study is necessary to obtain the assignment. Below is shown the projection of TNB onto the plane of A.